Statistical Analysis with Stata and Integration with R Training Course
Stata adalah paket perangkat lunak statistik canggih yang banyak digunakan untuk penelitian ekonometrika dan ilmu sosial. Meskipun R adalah bahasa pemrograman sumber terbuka untuk komputasi statistik, Stata menyediakan lingkungan terstruktur dengan alat dan perintah statistik bawaan.
Pelatihan langsung yang dipimpin instruktur ini (online atau di tempat) ditujukan untuk profesional ilmu komputer tingkat menengah hingga tingkat lanjut yang ingin memanfaatkan Stata untuk analisis statistik dan mengintegrasikannya dengan R.
Pada akhir pelatihan ini, peserta akan dapat:
- Gunakan Stata secara efektif untuk analisis data dan pemodelan statistik.
- Bandingkan fungsionalitas Stata dengan SPSS dan R.
- Integrasikan Stata dengan R untuk komputasi statistik yang lancar.
- Mengembangkan dan mengotomatiskan alur kerja menggunakan Stata dan R.
Format Kursus
- Kuliah dan diskusi interaktif.
- Banyak latihan dan praktik.
- Implementasi langsung di lingkungan lab langsung.
Opsi Kustomisasi Kursus
- Untuk meminta pelatihan khusus untuk kursus ini, silakan hubungi kami untuk mengaturnya.
Course Outline
Pengantar Stata
- Tinjauan umum Stata dan aplikasinya.
- Perbandingan Stata dengan SPSS dan R.
- Stata sintaksis, perintah, dan alur kerja.
Menyiapkan Lingkungan
- Menginstal dan mengkonfigurasi Stata.
- Tinjauan pustaka RStudio dan R untuk integrasi.
Data Management dalam Stata
- Mengimpor dan mengekspor data.
- Pembersihan dan transformasi data.
- Mengelola kumpulan data besar secara efisien.
Stata untuk Analisis Statistik
- Statistik deskriptif dan tabel ringkasan.
- Distribusi probabilitas dan pengujian hipotesis.
- Analisis regresi: model linear, logistik, dan multivariat.
Grafik dan Visualisasi dalam Stata
- Membuat bagan, plot, dan grafik.
- Menyesuaikan visualisasi untuk laporan.
Stata dan Integrasi R
- Membaca dan menulis data antara Stata dan R.
- Memanggil perintah Stata dari R.
- Mengotomatiskan alur kerja statistik antara kedua alat.
Topik Lanjutan
- Makro dan loop di Stata.
- Menggunakan Stata untuk pemodelan prediktif.
- Programming dalam Stata (file do, file ado).
Studi Kasus dan Aplikasi Praktis
- Aplikasi dunia nyata dalam penelitian dan ilmu data.
- Mengintegrasikan Stata dengan R dalam proyek akademis dan industri.
Ringkasan dan Langkah Berikutnya
Requirements
- Pengalaman menggunakan SPSS untuk analisis statistik
- Kemampuan dalam pemrograman R
Hadirin
- Profesional ilmu komputer
- Ilmuwan data dan peneliti yang bekerja dengan model statistik
- Analis yang ingin mengintegrasikan Stata dengan R
Open Training Courses require 5+ participants.
Statistical Analysis with Stata and Integration with R Training Course - Booking
Statistical Analysis with Stata and Integration with R Training Course - Enquiry
Statistical Analysis with Stata and Integration with R - Consultancy Enquiry
Consultancy Enquiry
Testimonials (5)
itu informatif dan bermanfaat
Brenton - Lotterywest
Course - Building Web Applications in R with Shiny
Machine Translated
Many examples and exercises related to the topic of the training.
Tomasz - Ministerstwo Zdrowia
Course - Advanced R Programming
Data management, reporting and statistics concepts.
Dumisani - Interfront SOC Ltd
Course - Stata: Beginner to Advanced
Day 1 and Day 2 were really straight forward for me and really enjoyed that experience.
Mareca Sithole - Africa Health Research Institute
Course - R Fundamentals
The pace was just right and the relaxed atmosphere made candidates feel at ease to ask questions.
Rhian Hughes - Public Health Wales NHS Trust
Course - Introduction to Data Visualization with Tidyverse and R
Upcoming Courses (Minimal 5 peserta)
Related Courses
Algorithmic Trading with Python and R
14 HoursPelatihan langsung yang dipimpin instruktur dalam Indonesia (online atau di tempat) ini ditujukan untuk analis bisnis yang ingin mengotomatiskan perdagangan dengan perdagangan algoritmik, Python, dan R.
Pada akhir pelatihan ini, peserta akan dapat:
- Gunakan algoritma untuk membeli dan menjual sekuritas pada kenaikan khusus dengan cepat.
- Kurangi biaya yang terkait dengan perdagangan menggunakan perdagangan algoritmik.
- Pantau harga saham dan lakukan perdagangan secara otomatis.
Programming with Big Data in R
21 HoursBig Data is a term that refers to solutions destined for storing and processing large data sets. Developed by Google initially, these Big Data solutions have evolved and inspired other similar projects, many of which are available as open-source. R is a popular programming language in the financial industry.
R Fundamentals
21 HoursR is an open-source free programming language for statistical computing, data analysis, and graphics. R is used by a growing number of managers and data analysts inside corporations and academia. R has also found followers among statisticians, engineers and scientists without computer programming skills who find it easy to use. Its popularity is due to the increasing use of data mining for various goals such as set ad prices, find new drugs more quickly or fine-tune financial models. R has a wide variety of packages for data mining.
Data Mining with R
14 HoursR is an open-source free programming language for statistical computing, data analysis, and graphics. R is used by a growing number of managers and data analysts inside corporations and academia. R has a wide variety of packages for data mining.
Forecasting with R
14 HoursPelatihan langsung yang dipimpin instruktur dalam Indonesia (online atau di tempat) ini ditujukan untuk analis data tingkat menengah dan profesional bisnis yang ingin melakukan peramalan deret waktu dan mengotomatiskan alur kerja analisis data menggunakan R.
Pada akhir pelatihan ini, peserta akan dapat:
- Memahami dasar-dasar teknik peramalan di R.
- Terapkan pemulusan eksponensial dan model ARIMA untuk analisis deret waktu.
- Manfaatkan paket 'forecast' untuk menghasilkan model peramalan yang akurat.
- Otomatisasi alur kerja peramalan untuk aplikasi bisnis dan penelitian.
Marketing Analytics using R
21 HoursAudience
Business owners (marketing managers, product managers, customer base managers) and their teams; customer insights professionals.
Overview
The course follows the customer life cycle from acquiring new customers, managing the existing customers for profitability, retaining good customers, and finally understanding which customers are leaving us and why. We will be working with real (if anonymous) data from a variety of industries including telecommunications, insurance, media, and high tech.
Format
Instructor-led training over the course of five half-day sessions with in-class exercises as well as homework. It can be delivered as a classroom or distance (online) course.
R for Data Analysis and Research
7 HoursAudience
- managers
- developers
- scientists
- students
Format of the course
on-line instruction and discussion OR face-to-face workshops
Introduction to R
21 HoursR is an open-source free programming language for statistical computing, data analysis, and graphics. R is used by a growing number of managers and data analysts inside corporations and academia. R has also found followers among statisticians, engineers and scientists without computer programming skills who find it easy to use. Its popularity is due to the increasing use of data mining for various goals such as set ad prices, find new drugs more quickly or fine-tune financial models. R has a wide variety of packages for data mining.
This course covers the manipulation of objects in R including reading data, accessing R packages, writing R functions, and making informative graphs. It includes analyzing data using common statistical models. The course teaches how to use the R software (https://www.r-project.org) both on a command line and in a graphical user interface (GUI).
R
21 HoursR is an open-source free programming language for statistical computing, data analysis, and graphics. R is used by a growing number of managers and data analysts inside corporations and academia. R has also found followers among statisticians, engineers and scientists without computer programming skills who find it easy to use. Its popularity is due to the increasing use of data mining for various goals such as set ad prices, find new drugs more quickly or fine-tune financial models. R has a wide variety of packages for data mining.
Neural Network in R
14 HoursThis course is an introduction to applying neural networks in real world problems using R-project software.
Advanced R Programming
7 HoursThis course is for data scientists and statisticians that already have basic R & C++ coding skills and R code and need advanced R coding skills.
The purpose is to give a practical advanced R programming course to participants interested in applying the methods at work.
Sector specific examples are used to make the training relevant to the audience
Stata: Beginner to Advanced
14 HoursPelatihan langsung yang dipimpin instruktur di Indonesia (online atau di tempat) ini ditujukan untuk analis data yang ingin menganalisis kumpulan data besar dengan Stata.
Pada akhir pelatihan ini, peserta akan dapat:
- Membuat model statistik untuk memprediksi variabel dan peristiwa penting.
- Hasilkan visualisasi deskriptif, tabel ringkasan, frekuensi, dan banyak lagi.
- Kelola dan susun kumpulan data besar, siap untuk analisis data.
Statistical Analysis with Stata and R
35 HoursPelatihan langsung yang dipimpin instruktur ini (online atau di tempat) ditujukan untuk analis data yang ingin menggunakan Stata dan R untuk menganalisis data besar untuk analisis statistik.
Pada akhir pelatihan ini, peserta akan dapat:
- Membuat model statistik untuk memprediksi variabel dan peristiwa penting.
- Hasilkan visualisasi deskriptif, tabel ringkasan, frekuensi, dan banyak lagi.
- Mengelola dan menyusun basis data besar untuk mempersiapkan analisis data.
Introduction to Data Visualization with Tidyverse and R
7 HoursThe Tidyverse is a collection of versatile R packages for cleaning, processing, modeling, and visualizing data. Some of the packages included are: ggplot2, dplyr, tidyr, readr, purrr, and tibble.
In this instructor-led, live training, participants will learn how to manipulate and visualize data using the tools included in the Tidyverse.
By the end of this training, participants will be able to:
- Perform data analysis and create appealing visualizations
- Draw useful conclusions from various datasets of sample data
- Filter, sort and summarize data to answer exploratory questions
- Turn processed data into informative line plots, bar plots, histograms
- Import and filter data from diverse data sources, including Excel, CSV, and SPSS files
Audience
- Beginners to the R language
- Beginners to data analysis and data visualization
Format of the course
- Part lecture, part discussion, exercises and heavy hands-on practice
Building Web Applications in R with Shiny
7 HoursDescription:
This is a course designed to teach R users how to create web apps without needing to learn cross-browser HTML, Javascript, and CSS.
Objective:
Covers the basics of how Shiny apps work.
Covers all commonly used input/output/rendering/paneling functions from the Shiny library.