Course Outline
Perkenalan
- Chainer melawan Caffe melawan Torch
- Tinjauan umum fitur dan komponen Chainer
Memulai
- Memahami struktur pelatih
- Menginstal Chainer, CuPy, dan NumPy
- Mendefinisikan fungsi pada variabel
Pelatihan Neural Networks di Chainer
- Membangun grafik komputasi
- Menjalankan contoh dataset MNIST
- Memperbarui parameter menggunakan pengoptimal
- Memproses gambar untuk mengevaluasi hasil
Bekerja dengan GPU di Chainer
- Menerapkan jaringan saraf berulang
- Menggunakan beberapa GPU untuk paralelisasi
Menerapkan Model Jaringan Saraf Lainnya
- Mendefinisikan model RNN dan menjalankan contoh
- Menghasilkan gambar dengan Deep Convolutional GAN
- Menjalankan Reinforcement Learning contoh
Penyelesaian Masalah
Ringkasan dan Kesimpulan
Requirements
- Pemahaman tentang jaringan saraf buatan
- Keakraban dengan kerangka kerja pembelajaran mendalam (Caffe, Torch, dll.)
- Python pengalaman pemrograman
Hadirin
- Peneliti AI
- Pengembang
Testimonials (5)
Hunter luar biasa, sangat menarik, sangat berpengetahuan dan menarik. Bagus sekali.
Rick Johnson - Laramie County Community College
Course - Artificial Intelligence (AI) Overview
Machine Translated
The trainer was a professional in the subject field and related theory with application excellently
Fahad Malalla - Tatweer Petroleum
Course - Applied AI from Scratch in Python
Very flexible.
Frank Ueltzhoffer
Course - Artificial Neural Networks, Machine Learning and Deep Thinking
Ann created a great environment to ask questions and learn. We had a lot of fun and also learned a lot at the same time.
Gudrun Bickelq
Course - Introduction to the use of neural networks
It was very interactive and more relaxed and informal than expected. We covered lots of topics in the time and the trainer was always receptive to talking more in detail or more generally about the topics and how they were related. I feel the training has given me the tools to continue learning as opposed to it being a one off session where learning stops once you've finished which is very important given the scale and complexity of the topic.