Adobe LiveCycle Designer Training Course
Adobe LiveCycle Designer is a software tool that allows users to create and edit PDF forms that can be filled out electronically or printed. Adobe LiveCycle Designer enables users to add various elements to PDF forms, such as text fields, buttons, checkboxes, lists, tables, images, and scripts. Adobe LiveCycle Designer also allows users to control the layout, appearance, validation, and logic of PDF forms, as well as integrate them with data sources and web services.
This instructor-led, live training (online or onsite) is aimed at beginner-level to intermediate-level developers and UI/UX designers who wish to use Adobe LiveCycle Designer to create interactive and dynamic PDF forms.
By the end of this training, participants will be able to:
- Create and edit PDF forms with various elements and properties.
- Add scripts and logic to PDF forms using JavaScript.
- Validate and secure PDF forms.
- Integrate PDF forms with data sources and web services.
- Deploy and distribute PDF forms.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Course Outline
User Control Panel
Mode of action forms
Document
- page
- preview
- patterns
Elements
- insert
- groups
- properties
- graphics
- field
- containers
- formatting
- own objects
- order
Layers model
Scripts
- languages
- preview
- formation
- modification
Validation
Forms
- dynamically
- counting
- developed
- added
The hierarchy of the document
Forms from other documents
Create PDF
Unlock pdf to save the Reader
Requirements
- Knowledge of programming in JavaScript
Audience
- Developers
- UI/UX designers
- Forms designers
Open Training Courses require 5+ participants.
Adobe LiveCycle Designer Training Course - Booking
Adobe LiveCycle Designer Training Course - Enquiry
Testimonials (2)
Very interactive with various examples, with a good progression in complexity between the start and the end of the training.
Jenny - Andheo
Course - GPU Programming with CUDA and Python
Energi dan humor pelatih.
Tadeusz Kaluba - Nokia Solutions and Networks Sp. z o.o.
Course - NVIDIA GPU Programming - Extended
Machine Translated
Upcoming Courses (Minimal 5 peserta)
Related Courses
Autodesk Fusion 360
21 HoursPelatihan langsung yang dipimpin instruktur di Indonesia (online atau di lokasi) ini ditujukan untuk penggemar desain 3D dan pencetakan 3D tingkat pemula hingga mahir yang ingin menggunakan Fusion 360 untuk merancang, menyimulasikan, dan menyiapkan model untuk pencetakan 3D.
Pada akhir pelatihan ini, peserta akan mampu:
- Instal dan konfigurasikan Fusion 360 untuk kinerja optimal.
- Rancang, modelkan, dan simulasikan objek 3D dalam lingkungan terpadu.
- Mengoptimalkan dan menyiapkan desain untuk proses pencetakan 3D.
- Berkolaborasi dan berbagi desain mereka menggunakan kemampuan cloud Fusion 360.
AMD GPU Programming
28 HoursThis instructor-led, live training in Indonesia (online or onsite) is aimed at beginner-level to intermediate-level developers who wish to use ROCm and HIP to program AMD GPUs and exploit their parallelism.
By the end of this training, participants will be able to:
- Set up a development environment that includes ROCm Platform, a AMD GPU, and Visual Studio Code.
- Create a basic ROCm program that performs vector addition on the GPU and retrieves the results from the GPU memory.
- Use ROCm API to query device information, allocate and deallocate device memory, copy data between host and device, launch kernels, and synchronize threads.
- Use HIP language to write kernels that execute on the GPU and manipulate data.
- Use HIP built-in functions, variables, and libraries to perform common tasks and operations.
- Use ROCm and HIP memory spaces, such as global, shared, constant, and local, to optimize data transfers and memory accesses.
- Use ROCm and HIP execution models to control the threads, blocks, and grids that define the parallelism.
- Debug and test ROCm and HIP programs using tools such as ROCm Debugger and ROCm Profiler.
- Optimize ROCm and HIP programs using techniques such as coalescing, caching, prefetching, and profiling.
Adobe Animate: Basics to Advanced
21 HoursPelatihan langsung yang dipandu instruktur dalam Indonesia (online atau di tempat) ini ditujukan untuk desainer grafis dan animator tingkat pemula hingga menengah yang ingin mempelajari cara membuat animasi yang menakjubkan, media interaktif, dan konten web yang menarik menggunakan Adobe Animate.
Pada akhir pelatihan ini, peserta akan dapat:
- Navigasi antarmuka dan alat Adobe Animate.
- Buat dan edit animasi menggunakan bingkai utama, gerakan bergerak, dan bentuk bergerak.
- Merancang animasi dan aplikasi interaktif dengan ActionScript dan JavaScript.
- Gabungkan elemen audio dan video ke dalam proyek.
- Ekspor animasi untuk platform web, video, dan seluler.
Administration of CUDA
35 HoursThis instructor-led, live training in Indonesia (online or onsite) is aimed at beginner-level system administrators and IT professionals who wish to install, configure, manage, and troubleshoot CUDA environments.
By the end of this training, participants will be able to:
- Understand the architecture, components, and capabilities of CUDA.
- Install and configure CUDA environments.
- Manage and optimize CUDA resources.
- Debug and troubleshoot common CUDA issues.
GPU Programming with CUDA and Python
14 HoursPelatihan langsung dengan instruktur di Indonesia (online atau di lokasi) ini ditujukan untuk pengembang tingkat menengah yang ingin menggunakan CUDA untuk membangun aplikasi Python yang berjalan secara paralel di NVIDIA GPU.
Pada akhir pelatihan ini, peserta akan mampu:
- Menggunakan compiler Numba untuk mempercepat aplikasi Python yang berjalan pada NVIDIA GPU.
- Membuat, mengkompilasi, dan meluncurkan kernel CUDA khusus.
- Mengelola memori GPU.
- Mengubah aplikasi berbasis CPU menjadi aplikasi yang dipercepat oleh GPU.
Introduction to GPU Programming
21 HoursThis instructor-led, live training in Indonesia (online or onsite) is aimed at beginner-level to intermediate-level developers who wish to learn the basics of GPU programming and the main frameworks and tools for developing GPU applications.
- By the end of this training, participants will be able to:
Understand the difference between CPU and GPU computing and the benefits and challenges of GPU programming. - Choose the right framework and tool for their GPU application.
- Create a basic GPU program that performs vector addition using one or more of the frameworks and tools.
- Use the respective APIs, languages, and libraries to query device information, allocate and deallocate device memory, copy data between host and device, launch kernels, and synchronize threads.
- Use the respective memory spaces, such as global, local, constant, and private, to optimize data transfers and memory accesses.
- Use the respective execution models, such as work-items, work-groups, threads, blocks, and grids, to control the parallelism.
- Debug and test GPU programs using tools such as CodeXL, CUDA-GDB, CUDA-MEMCHECK, and NVIDIA Nsight.
- Optimize GPU programs using techniques such as coalescing, caching, prefetching, and profiling.
GPU Programming with CUDA
28 HoursPelatihan langsung yang dipandu instruktur di Indonesia (online atau di tempat) ini ditujukan untuk pengembang tingkat pemula hingga menengah yang ingin menggunakan CUDA untuk memprogram NVIDIA GPU dan memanfaatkan paralelismenya.
Pada akhir pelatihan ini, peserta akan dapat:
- Siapkan lingkungan pengembangan yang mencakup CUDA Toolkit, NVIDIA GPU, dan Visual Studio Code.
- Buat program CUDA dasar yang melakukan penjumlahan vektor pada GPU dan mengambil hasilnya dari memori GPU.
- Gunakan CUDA API untuk menanyakan informasi perangkat, mengalokasikan dan membatalkan alokasi memori perangkat, menyalin data antara host dan perangkat, meluncurkan kernel, dan menyinkronkan thread.
- Gunakan bahasa CUDA C/C++ untuk menulis kernel yang dieksekusi pada GPU dan memanipulasi data.
- Gunakan fungsi, variabel, dan pustaka bawaan CUDA untuk melakukan tugas dan operasi umum.
- Gunakan ruang memori CUDA, seperti global, bersama, konstan, dan lokal, untuk mengoptimalkan transfer data dan akses memori.
- Gunakan model eksekusi CUDA untuk mengendalikan thread, blok, dan grid yang menentukan paralelisme.
- Debug dan uji program CUDA menggunakan alat seperti CUDA-GDB, CUDA-MEMCHECK, dan NVIDIA Nsight.
- Optimalkan program CUDA menggunakan teknik seperti penggabungan, caching, prefetching, dan pembuatan profil.
97% kepuasan klien.
GPU Programming with OpenACC
28 HoursThis instructor-led, live training in Indonesia (online or onsite) is aimed at beginner-level to intermediate-level developers who wish to use OpenACC to program heterogeneous devices and exploit their parallelism.
By the end of this training, participants will be able to:
- Set up an OpenACC development environment.
- Write and run a basic OpenACC program.
- Annotate code with OpenACC directives and clauses.
- Use OpenACC API and libraries.
- Profile, debug, and optimize OpenACC programs.
GPU Programming with OpenCL
28 HoursThis instructor-led, live training in Indonesia (online or onsite) is aimed at beginner-level to intermediate-level developers who wish to use OpenCL to program heterogeneous devices and exploit their parallelism.
By the end of this training, participants will be able to:
- Set up a development environment that includes OpenCL SDK, a device that supports OpenCL, and Visual Studio Code.
- Create a basic OpenCL program that performs vector addition on the device and retrieves the results from the device memory.
- Use OpenCL API to query device information, create contexts, command queues, buffers, kernels, and events.
- Use OpenCL C language to write kernels that execute on the device and manipulate data.
- Use OpenCL built-in functions, extensions, and libraries to perform common tasks and operations.
- Use OpenCL host and device memory models to optimize data transfers and memory accesses.
- Use OpenCL execution model to control the work-items, work-groups, and ND-ranges.
- Debug and test OpenCL programs using tools such as CodeXL, Intel VTune, and NVIDIA Nsight.
- Optimize OpenCL programs using techniques such as vectorization, loop unrolling, local memory, and profiling.
GPU Programming - OpenCL vs CUDA vs ROCm
28 HoursThis instructor-led, live training in Indonesia (online or onsite) is aimed at beginner-level to intermediate-level developers who wish to use different frameworks for GPU programming and compare their features, performance, and compatibility.
By the end of this training, participants will be able to:
- Set up a development environment that includes OpenCL SDK, CUDA Toolkit, ROCm Platform, a device that supports OpenCL, CUDA, or ROCm, and Visual Studio Code.
- Create a basic GPU program that performs vector addition using OpenCL, CUDA, and ROCm, and compare the syntax, structure, and execution of each framework.
- Use the respective APIs to query device information, allocate and deallocate device memory, copy data between host and device, launch kernels, and synchronize threads.
- Use the respective languages to write kernels that execute on the device and manipulate data.
- Use the respective built-in functions, variables, and libraries to perform common tasks and operations.
- Use the respective memory spaces, such as global, local, constant, and private, to optimize data transfers and memory accesses.
- Use the respective execution models to control the threads, blocks, and grids that define the parallelism.
- Debug and test GPU programs using tools such as CodeXL, CUDA-GDB, CUDA-MEMCHECK, and NVIDIA Nsight.
- Optimize GPU programs using techniques such as coalescing, caching, prefetching, and profiling.
Learning Maya
14 HoursPelatihan langsung yang dipimpin instruktur di Indonesia (online atau di tempat) ini ditujukan untuk desainer web yang ingin menggunakan Maya untuk membuat animasi 3D.
Pada akhir pelatihan ini, peserta akan dapat:
- Buat model dan tekstur realistis di Maya.
- Animasikan dan render proyek untuk pemutaran berkualitas tinggi.
- Simulasikan efek alami seperti air dan asap.
NVIDIA GPU Programming - Extended
21 HoursThis instructor-led, live training course in Indonesia covers how to program GPUs for parallel computing, how to use various platforms, how to work with the CUDA platform and its features, and how to perform various optimization techniques using CUDA. Some of the applications include deep learning, analytics, image processing and engineering applications.
WebGL: Create an Animated 3D Application
21 HoursWebGL (Web Graphics Library) adalah JavaScript API untuk merender grafik 3D dalam browser web tanpa menggunakan plug-in.
Dalam pelatihan langsung yang dipandu instruktur ini, peserta akan mempelajari cara membuat gambar komputer realistis menggunakan grafik 3D saat mereka membuat aplikasi 3D animasi yang berjalan di browser.
Pada akhir pelatihan ini, peserta akan dapat:
- Memahami dan menggunakan berbagai fungsi WebGL, termasuk mesh, transformasi, kamera, material, pencahayaan, dan animasi
- Animasikan objek dengan WebGL
- Membuat objek 3D menggunakan WebGL
Hadirin
- Pengembang
Format kursus
- Sebagian kuliah, sebagian diskusi, latihan dan praktik langsung yang berat
ROCm for Windows
21 HoursThis instructor-led, live training in Indonesia (online or onsite) is aimed at beginner-level to intermediate-level developers who wish to install and use ROCm on Windows to program AMD GPUs and exploit their parallelism.
By the end of this training, participants will be able to:
- Set up a development environment that includes ROCm Platform, a AMD GPU, and Visual Studio Code on Windows.
- Create a basic ROCm program that performs vector addition on the GPU and retrieves the results from the GPU memory.
- Use ROCm API to query device information, allocate and deallocate device memory, copy data between host and device, launch kernels, and synchronize threads.
- Use HIP language to write kernels that execute on the GPU and manipulate data.
- Use HIP built-in functions, variables, and libraries to perform common tasks and operations.
- Use ROCm and HIP memory spaces, such as global, shared, constant, and local, to optimize data transfers and memory accesses.
- Use ROCm and HIP execution models to control the threads, blocks, and grids that define the parallelism.
- Debug and test ROCm and HIP programs using tools such as ROCm Debugger and ROCm Profiler.
- Optimize ROCm and HIP programs using techniques such as coalescing, caching, prefetching, and profiling.